- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Laas, Alo (2)
-
Rusak, James_A (2)
-
de_Eyto, Elvira (2)
-
de_Wit, Heleen_A (2)
-
Alfonso, María_Belén (1)
-
Aurela, Mika (1)
-
Austnes, Kari (1)
-
Baldocchi, Angela (1)
-
Barros, Nathan (1)
-
Bastviken, David (1)
-
Bezerra‐Neto, José_Fernandes (1)
-
Bikše, Jānis (1)
-
Brighenti, Ludmila_S (1)
-
Bruesewitz, Denise_A (1)
-
Carey, Cayelan_C (1)
-
Chmiel, Hannah_E (1)
-
Clayer, Francois (1)
-
Corman, Jessica_R (1)
-
Couture, Raoul‐Marie (1)
-
Denfeld, Blaize_A (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Lakes play a significant role in the global carbon cycle, acting as sources and sinks of carbon dioxide (CO2). In situ measurements of CO2flux (FCO2) from lakes have generally been collected during daylight, despite indications of significant diel variability. This introduces bias when scaling up to whole‐lake annual aquatic carbon budgets. We conducted an international sampling program to ascertain the extent of diel variation in FCO2across lakes. We sampled 21 lakes over 41 campaigns and measured FCO2at 4‐h intervals over a full diel cycle. Rates of FCO2ranged from −3.16 to 4.39 mmol m−2 h−1. Integrated over a day, FCO2ranged from −381.68 to 878.49 mg C m−2d−1(mean = 76.54) across campaigns. We identified three characteristic diel patterns in FCO2related to trophic status and show that for half of the campaigns, daily flux estimates were biased by > 50% if based on a single (daytime) measurement.more » « less
-
Corman, Jessica_R; Zwart, Jacob_A; Klug, Jennifer; Bruesewitz, Denise_A; de_Eyto, Elvira; Klaus, Marcus; Knoll, Lesley_B; Rusak, James_A; Vanni, Michael_J; Alfonso, María_Belén; et al (, Limnology and Oceanography)Abstract In lakes, the rates of gross primary production (GPP), ecosystem respiration (R), and net ecosystem production (NEP) are often controlled by resource availability. Herein, we explore how catchment vs. within lake predictors of metabolism compare using data from 16 lakes spanning 39°N to 64°N, a range of inflowing streams, and trophic status. For each lake, we combined stream loads of dissolved organic carbon (DOC), total nitrogen (TN), and total phosphorus (TP) with lake DOC, TN, and TP concentrations and high frequencyin situmonitoring of dissolved oxygen. We found that stream load stoichiometry indicated lake stoichiometry for C : N and C : P (r2 = 0.74 andr2 = 0.84, respectively), but not for N : P (r2 = 0.04). As we found a strong positive correlation between TN and TP, we only used TP in our statistical models. For the catchment model, GPP and R were best predicted by DOC load, TP load, and load N : P (R2 = 0.85 andR2 = 0.82, respectively). For the lake model, GPP and R were best predicted by TP concentrations (R2 = 0.86 andR2 = 0.67, respectively). The inclusion of N : P in the catchment model, but not the lake model, suggests that both N and P regulate metabolism and that organisms may be responding more strongly to catchment inputs than lake resources. Our models predicted NEP poorly, though it is unclear why. Overall, our work stresses the importance of characterizing lake catchment loads to predict metabolic rates, a result that may be particularly important in catchments experiencing changing hydrologic regimes related to global environmental change.more » « less
An official website of the United States government
